10-5 Standardized Test Prep Hyperbolas

Multiple Choice

For Exercises 1–4, choose the correct letter.

1. A hyperbola has vertices $(\pm 5, 0)$ and one focus at (6, 0). What is the equation of the hyperbola in standard form?

$$x^2 - \frac{y^2}{11} - \frac{y^2}{25} = 1$$

2. A hyperbola with a horizontal transverse axis has asymptotes $y = \pm \frac{3}{4}x$. Which of the following could be the equation of the hyperbola in standard form?

$$\boxed{F} \frac{x^2}{3} + \frac{y^2}{4} = 1$$

$$\frac{x^2}{4} - \frac{y^2}{3} = 1$$

$$\bigcirc \frac{x^2}{16} - \frac{y^2}{9} = 1$$

3. What are the vertices of the hyperbola with the equation $8x^2 - 9y^2 = 72$?

B
$$(\pm 2\sqrt{2}, 0)$$
 C $(\pm 8, 0)$

①
$$(\pm 9, 0)$$

4. What are the foci of the hyperbola with the equation $\frac{y^2}{12} - \frac{x^2}{5} = 1$?

$$\bigcirc$$
 (0, \pm 5)

G
$$(0, \pm 12)$$

(H)
$$(0, \pm \sqrt{13})$$
 (0, $\pm \sqrt{17}$)

Short Response

5. What are the vertices, foci, and asymptotes of the hyperbola with the equation $4v^2 - 16x^2 = 64$?