_____Class _____ Date_____

Extra Practice

Chapter 4

Lessons 4-1 and 4-2

Graph each system.

1.
$$y = 3x^2$$
 2. $y = (x+3)^2 + 1$ **3.** $y = 2x^2 + 4$

4.
$$y = (x + 1)^2 - 3$$

5. $y = (x - 2)^2$
6. $y = -2(x - 1)^2 + 3$

Identify the vertex, axis of symmetry, minimum or maximum value, and domain and range of each function.

7. $y = 4(x-2)^2$ **8.** $f(x) = (x+1)^2 + 2$ **9.** $y = -\frac{1}{2}(x-4)^2 - 10$ **10.** $f(x) = x^2 - 4x + 5$ **11.** $f(x) = -2x^2 + 4x - 3$ **12.** $y = x^2 + 5x - 14$

- **13.** A ball is dropped from the top of a building. The distance in meters above the ground *y* of the ball after *t* seconds can be modeled by the equation $y = -9.8t^2 + 100.$
 - **a.** What is the *y*-intercept of the equation?
 - **b.** Describe the meaning of the *y*-intercept of the graph of the equation.

Class

Date

Extra Practice (continued)

Chapter 4

14. Martin has 120 feet of fencing to enclose two rectangular play areas for children. He plans to enclose a rectangular area and then divide it into two equal sections, as shown in the figure.

a. Find the dimensions of the largest total area Martin can enclose.

- **b.** Find the area of each of the small play areas.
- 15. Marnie throws a softball straight up into the air. The ball leaves her hand when it is exactly 5 ft from the ground. The height h of the ball, in feet, can be written as a function of time t, in seconds, as $h = -16t^2 + 40t + 5$.
 - **a.** What is the maximum height the ball reaches?
 - b. Marnie catches the ball 5 ft from the ground. How long was the ball in the air?

Lesson 4-3

Find an equation in standard form of the parabola passing through the given points.

16. (0, 3), (1, 2), (2, 3)	17. (-3, -4), (0, -4), (1, 0)	18. (-1, 0), (0, 3), (1, 2)
19. (-4, 3), (-2, -1), (2, 3)	20. (0, 0), (1,-3), (2, 2)	21. (-3, 0), (0, -3), (3, 0)

22. The table shows the relation between the speed of a car and its stopping distance.

Speed (mi/h)	35	45	50	60
Stopping Distance (ft)	96	140	165	221

- **a.** Use a quadratic function to model the data.
- **b.** Predict the stopping distance for a car traveling at 65 mi/h.

Lesson 4-4

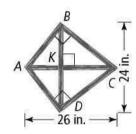
Factor each expression.

23. $x^2 + 3x - 54$	24. $x^2 + 10x + 24$	25. <i>x</i> ² – 36
26. $x^2 - 9x - 36$	27. $x^2 - 15x + 56$	28. $25x^2 + 70x + 49$
29. $7x^2 - 20x - 3$	30. $5x^2 + 23x - 10$	31. $\frac{1}{4}x^2 - 4$
32. $x^2 - 6x - 16$	33. $4x^2 + 12x + 40$	34. $4x^2 - 6x + 9$

Class _____

Date

Extra Practice (continued)


Chapter 4

Lesson 4-5

Solve each equation by factoring, by taking square roots, or by graphing. When necessary, round your answer to the nearest hundredth.

35. $x^2 + 4x - 1 = 0$	36. $4x^2 - 100 = 0$	37. $x^2 = -2x + 1$
38. $x^2 - 9 = 0$	39. $2x^2 + 4x = 70$	40. $x^2 - 30 = 10$
41. $x^2 + 4x = 0$	42. $x^2 + 3x + 2 = 0$	43. $x^2 = 8x = -16$

- **44**. Hal's sister is 5 years older than Hal. The product of their ages is 456. How old are Hal and his sister?
- **45.** A toy rocket is fired upward from the ground. The relation between its height *h*, in feet, and the time *t* from launch, in seconds, can be described by the equation $h = -16t^2 + 64t$. How long does the rocket stay more than 48 feet above the ground?
- **46.** The expression $P(x) = 2500x 2x^2$ describes the profit of a company that customizes bulldozers when it customizes *x* bulldozers in a month.
 - **a.** How many bulldozers per month must the company customize to make the maximum possible profit? What is the maximum profit?
 - **b.** Describe a reasonable domain and range for the function P(x).
 - c. For what number of bulldozers per month is the profit at least \$750,000?
- **47.** Flor is designing a kite with two perpendicular crosspieces that are 26 inches and 24 inches long, as shown in the figure. How long should \overrightarrow{Ak} be so that $\overrightarrow{AB} \perp \overrightarrow{BC}$ and $\overrightarrow{AD} \perp \overrightarrow{DC}$?
- **48.** The lengths of the sides of a right triangle are x, x + 4, and x + 8 inches. What is the value of x? What is the length of the hypotenuse of the triangle?

Lessons 4-6 and 4-7

Solve each equation by completing the square or using the Quadratic Formula.

49. $x^2 + 5x + 8 = 4$	50. $2x^2 - 5x + 1 = 0$	51. $x^2 - 7x = 0$
52. $x^2 + 4x + 4 = 0$	53. $x^2 - 7 = 0$	54. $x^2 + 8x - 17 = 0$

Prentice Hall Algebra 2 • Extra Practice Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Extra Practice (continued)

Chapter 4

Evaluate the discriminant of each equation. Tell how many real solutions each equation has.

56. $2x^2 + x = -1$ **57.** $x^2 - 4x + 5 = 0$ **55.** $x^2 + 4x = 17$ **59.** $x^2 - 19 = 1$ **58.** $2x^2 + 5x = 0$ **60.** $3x^2 = 8x - 4$ **63.** $x^2 + 16 = 0$ **61.**– $2x^2 + 1 = 7x$ **62.** $4x^2 + 4x = -1$

64. The height y of a parabolic arch is given by $y = -\frac{1}{16}x^2 + 40$, where x is the

horizontal distance from the center of the base of the arch. All distances are in feet.

- **a.** What is the highest point on the arch?
- **b.** How wide is the arch at the base to the nearest tenth of a foot?
- 65. An archer's arrow follows a parabolic path. The path of the arrow can be described by the equation $y = -0.005x^2 + 2x + 5$.
 - **a.** Describe the meaning of the *y*-intercept of the graph of the equation.
 - **b.** What is the horizontal distance the arrow travels before it hits the ground? Round your answer to the nearest foot.

Lesson 4-8

Simplify each number by using the imaginary number *i*.

66. √−9	67. √-36	68. $\sqrt{-80}$
69. √-289	70. √-175	71. √–117

Simplify each expression.

72. $(3 - i) + (5 - 2i)$	73. $(4+2i)(1-i)$	74. $(4+2i) - (3+5i)$
75. (8 – 3 <i>i</i>)(6 + 9 <i>i</i>)	76. $(2+5i) - (-6+i)$	77. $(-2 - 3i)(7 - i)$

Solve each equation. Check your answers.

Lesson 4-9

Solve each system.

81.
$$\begin{cases} y = x^{2} - 11x + 24 \\ y = x - 3 \end{cases}$$
82.
$$\begin{cases} y = x^{2} + 2x - 8 \\ y = x + 4 \end{cases}$$
83.
$$\begin{cases} y = 2x^{2} + 9x - 5 \\ y = x + 5 \end{cases}$$
84.
$$\begin{cases} y = x^{2} - 3x - 7 \\ y = -x^{2} - x + 5 \end{cases}$$
85.
$$\begin{cases} y = 2x^{2} + x + 4 \\ y = -x^{2} - x + 9 \end{cases}$$
86.
$$\begin{cases} y = x^{2} - 2x - 1 \\ y = \frac{3}{4}x^{2} + x - 6 \end{cases}$$

Prentice Hall Algebra 2 • Extra Practice Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.