Class Date

Extra Practice

Chapter 6

Lesson 6-1

Simplify each radical expression. Use absolute value symbols as needed.

2. $\sqrt{c^{80}d^{50}}$ **1.** $\sqrt{36x^4}$ **3.** $\sqrt[4]{81x^{12}}$ **5.** $\sqrt[5]{-32k^5}$ **6.** $\sqrt[4]{\frac{1}{16}} w^{12}$ **4.** ³√-64 **8.** $\sqrt[3]{27 y^{15}}$ **7.** $\sqrt[4]{m^{18}n^8}$ 9. $\sqrt[5]{-243r^{20}}$

10. You can use the expression $D = 1.2 \sqrt{h}$ to approximate the visibility range D, in miles, from a height of *h* feet above ground.

a. Estimate the visibility from a height of 900 feet.

- **b.** How far above ground is an observer whose visibility range is 84 miles?
- **11.** You can approximate the speed of a falling object as $v = 8\sqrt{d}$, where v is the speed in feet per second and d is the distance, in feet, the object has fallen. Express d in terms of v.

Lesson 6-2

Multiply or divide and simplify. Assume that all variables are positive.

12.
$$\sqrt{3x^4} \cdot \sqrt{24x^3}$$
13. $\sqrt[3]{4} \cdot \sqrt[3]{18}$
14. $\sqrt{5a^3} \cdot \sqrt{20a}$

15. $\frac{\sqrt{80}}{\sqrt{5}}$
16. $\frac{\sqrt{18x^5 y}}{\sqrt{2x}}$
17. $\frac{\sqrt[3]{640w^3 z^8}}{\sqrt[3]{5wz^4}}$

18. The time T it takes a pendulum to make a full swing in each direction and return to its original position is called the period of the pendulum. The equation $T = 2\pi \sqrt{\frac{\ell}{32}}$ relates the length of the pendulum ℓ , in feet, to its period T, in seconds. How long is a pendulum if its period is 3 seconds? Round the answer to the nearest tenth.

Lesson 6-3

Simplify.

19.
$$2\sqrt{7} + 3\sqrt{7}$$
20. $\sqrt{32} + \sqrt{8}$ **21.** $\sqrt{7x} + \sqrt{28x}$ **22.** $3\sqrt{18} + 2\sqrt{72}$ **23.** $\sqrt{27} + \sqrt{48}$ **24.** $8\sqrt{45} - 3\sqrt{80}$ **25.** $(2 + \sqrt{5})(3 + \sqrt{5})$ **26.** $(6 - \sqrt{7})(1 - \sqrt{7})$ **27.** $(\sqrt{10} + 3)^2$ **28.** $(3\sqrt{5} - 2)(3\sqrt{5} + 2)$ **29.** $\frac{5}{2 - \sqrt{3}}$ **30.** $\frac{4 - 3\sqrt{7}}{1 + 2\sqrt{7}}$

Prentice Hall Algebra 2 • Extra Practice Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Class _____ Date__

Garden

2

Extra Practice (continued)

Chapter 6

Lesson 6-4

Write each expression in simplest form. Assume that all variables are positive.

Lesson 6-5

Solve. Check for extraneous solutions.

43. $\sqrt{13x-10} = 3x$ **44.** $\sqrt{x+20} = x$ **46.** $(7x)^{\frac{1}{3}} = (5x+2)^{\frac{1}{3}}$ **45.** $(4x-12)^{\frac{1}{2}} + 3 = x$ **48.** $\sqrt{10x} - 2\sqrt{5x - 25} = 0$ **47.** $\sqrt{x-2} - \sqrt{2x+3} = -2$

49. A community garden offers two different square-shaped plots of growing space as shown. The larger plot measures one square meter greater than the smaller one. The combined lengths of the two gardens is $3 + 2\sqrt{2}$ meters.

a. What is the area of Garden 1?	2+535 35 355+5
b. What is the length of Garden 2?	Garden G
esson 6-6	$ $ $+ 2\sqrt{2}$ $+$

Lesson 6

Let $f(x) = 3x^2$ and g(x) = 2 - 5x. Perform each function operation.

50. $f(x) - g(x)$	51. $f(x) \cdot g(x)$	52. $\frac{f(x)}{g(x)}$
53. $(f + g)(x)$	54. $(f \cdot g)(x)$	55. $\frac{g}{f}(x)$

Let $f(x) = x^2$ and g(x) = 3x + 1. Evaluate each expression.

56. (<i>f</i> ° <i>g</i>)(0)	57. (<i>f</i> ° <i>g</i>)(2)	58. (<i>f</i> ° <i>g</i>)(23)
59. (<i>f</i> ° <i>g</i>)(5)	60. (<i>g</i> ° <i>f</i>)(0)	61. $(g \circ f)(1)$
62. (<i>g</i> ° <i>f</i>)(–1)	63. (<i>f</i> ° <i>f</i>)(3)	64. (<i>g</i> ° <i>g</i>)(4)

Extra Practice (continued)

Chapter 6

- **65.** Halina works in a department store. Three times per year she is allowed to combine her employee discount with special sale prices. Let x be the retail price of a blouse.
 - **a.** Halina's employee discount is 20%. Write a function E(x) that represents the cost of the blouse after the discount.
 - **b.** Due to a manufacturer's incentive, the blouse is marked down 25%. Write a function M(x) that represents the sale price.
 - **c.** The sales tax on clothing is 6%. Write a function T(x) that describes the cost of a clothing item with sales tax included.
 - **d.** Halina found a blouse to which the discounts apply. Use the function composition $f = T \circ E \circ M$ to write the function f(x) that represents the price Halina will pay for the blouse.
- **66.** You invest *p* dollars in an account that earns a simple interest of 6%. The function that represents the account balance at the end of the year is f(p) = 1.06p.
 - **a.** Suppose that at the end of the year you deposit 500 in the account. Write a new function g(p) that shows the balance that will earn interest in the second year.
 - **b.** At the end of every year you add \$500 to the account. The interest rate remains 6%. Write a composition of functions *f* and *g* to find the account balance at the end of the third year, before adding the \$500. Find that balance for an initial investment of \$1000.

Lesson 6-7

For each function f, find f^{-1} and the domain and range of f and f^{-1} . Determine whether f^{-1} is a function.

67.
$$f(x) = 6x + 1$$
 68. $f(x) = \sqrt{x+4}$ **69.** $f(x) = \sqrt{x-3}$

70.
$$f(x) = \sqrt{-5x+2}$$
 71. $f(x) = 3x^2 + 1$ **72.** $f(x) = 2 - x^2$

Prentice Hall Algebra 2 • Extra Practice Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

____Class _____Date____

Extra Practice (continued)

Chapter 6

73. You can use the function f(x) = 331.4 + 0.6x to approximate the speed of sound in dry air, where *x* is the temperature in degrees Celsius.

- **a.** Write an algebraic expression for the inverse function $f^{-1}(x)$.
- **b.** Evaluate $f^{-1}(x)$ for x 5 350. Round the result to the nearest whole number. Explain what your result represents.

Lesson 6-8

Graph each function.

74.
$$y = \sqrt{x}$$
 75. $y = \sqrt{x} - 1$ **76.** $y = \sqrt{x} + 3$

77.
$$y = \sqrt{x+3}$$
 78. $y = 4\sqrt{x}$ **79.** $y = \frac{3}{4}\sqrt{x}$

80.
$$y = 2\sqrt{x-5} + 2$$
 81. $y = \sqrt[3]{x+1}$ **82.** $y = \sqrt[3]{x-2} - 3$