\qquad
\qquad Date \qquad

Extra Practice

Chapter 6

Lesson 6-1

Simplify each radical expression. Use absolute value symbols as needed.

1. $\sqrt{36 x^{4}}$
2. $\sqrt{c^{80} d^{50}}$
3. $\sqrt[4]{81 x^{12}}$
4. $\sqrt[3]{-64}$
5. $\sqrt[5]{-32 k^{5}}$
6. $\sqrt[4]{\frac{1}{16} w^{12}}$
7. $\sqrt[4]{m^{18} n^{8}}$
8. $\sqrt[3]{27 y^{15}}$
9. $\sqrt[5]{-243 r^{20}}$
10. You can use the expression $D=1.2 \sqrt{h}$ to approximate the visibility range D, in miles, from a height of h feet above ground.
a. Estimate the visibility from a height of 900 feet.
b. How far above ground is an observer whose visibility range is 84 miles?
11. You can approximate the speed of a falling object as $v=8 \sqrt{d}$, where v is the speed in feet per second and d is the distance, in feet, the object has fallen. Express d in terms of v.

Lesson 6-2

Multiply or divide and simplify. Assume that all variables are positive.
12. $\sqrt{3 x^{4}} \cdot \sqrt{24 x^{3}}$
13. $\sqrt[3]{4} \cdot \sqrt[3]{18}$
14. $\sqrt{5 a^{3}} \cdot \sqrt{20 a}$
15. $\frac{\sqrt{80}}{\sqrt{5}}$
16. $\frac{\sqrt{18 x^{5} y}}{\sqrt{2 x}}$
17. $\frac{\sqrt[3]{640 w^{3} z^{8}}}{\sqrt[3]{5 w z^{4}}}$
18. The time T it takes a pendulum to make a full swing in each direction and return to its original position is called the period of the pendulum. The equation $T=2 \pi \sqrt{\frac{\ell}{32}}$ relates the length of the pendulum ℓ, in feet, to its period T, in seconds. How long is a pendulum if its period is 3 seconds? Round the answer to the nearest tenth.

Lesson 6-3

Simplify.
19. $2 \sqrt{7}+3 \sqrt{7}$
20. $\sqrt{32}+\sqrt{8}$
21. $\sqrt{7 x}+\sqrt{28 x}$
22. $3 \sqrt{18}+2 \sqrt{72}$
23. $\sqrt{27}+\sqrt{48}$
24. $8 \sqrt{45}-3 \sqrt{80}$
25. $(2+\sqrt{5})(3+\sqrt{5})$
26. $(6-\sqrt{7})(1-\sqrt{7})$
27. $(\sqrt{10}+3)^{2}$
28. $(3 \sqrt{5}-2)(3 \sqrt{5}+2)$
29. $\frac{5}{2-\sqrt{3}}$
30. $\frac{4-3 \sqrt{7}}{1+2 \sqrt{7}}$
\qquad
\qquad Date \qquad

Extra Practice (continued)

Chapter 6

Lesson 6-4

Write each expression in simplest form. Assume that all variables are positive.
31. $81^{\frac{1}{2}}$
32. $36^{\frac{1}{4}} \cdot 36^{\frac{1}{4}}$
33. $\left(x^{-\frac{4}{3}} y^{\frac{3}{5}}\right)^{15}$
34. $\left(x^{\frac{1}{4}} y^{-\frac{3}{8}}\right)^{16}$
35. $\left(8 x^{15} y-9\right)^{-\frac{1}{3}}$
36. $\left(-27 x^{-9} y^{6}\right)^{\frac{1}{3}}$
37. $\left(-32 x^{-10} y^{15}\right)^{\frac{1}{5}}$
38. $\left(32 x^{20} y^{-10}\right)^{-\frac{1}{5}}$
39. $\left(\frac{81 y^{16}}{16 x^{12}}\right)^{\frac{1}{4}}$
40. $\left(\frac{16 x^{14}}{81 y^{18}}\right)^{\frac{1}{2}}$
41. $\sqrt{5} \cdot \sqrt[3]{5}$
42. $\frac{\sqrt[6]{x^{2}}}{\sqrt[3]{x^{5}}}$

Lesson 6-5

Solve. Check for extraneous solutions.
43. $\sqrt{13 x-10}=3 x$
44. $\sqrt{x+20}=x$
45. $(4 x-12)^{\frac{1}{2}}+3=x$
46. $(7 x)^{\frac{1}{3}}=(5 x+2)^{\frac{1}{3}}$
47. $\sqrt{x-2}-\sqrt{2 x+3}=-2$
48. $\sqrt{10 x}-2 \sqrt{5 x-25}=0$
49. A community garden offers two different square-shaped plots of growing space as shown. The larger plot measures one square meter greater than the smaller one. The combined lengths of the two gardens is $3+2 \sqrt{2}$ meters.
a. What is the area of Garden 1 ?
b. What is the length of Garden 2 ?

Lesson 6-6

Let $f(x)=3 x^{2}$ and $g(x)=2-5 x$. Perform each function operation.
50. $f(x)-g(x)$
51. $f(x) \cdot g(x)$
52. $\frac{f(x)}{g(x)}$
53. $(f+g)(x)$
54. $(f \cdot g)(x)$
55. $\frac{g}{f}(x)$

Let $f(x)=x^{2}$ and $g(x)=3 x+1$. Evaluate each expression.
56. $(f \circ g)(0)$
57. $(f \circ g)(2)$
58. $(f \circ g)(23)$
59. $(f \circ g)(5)$
60. $(g \circ f)(0)$
61. $(g \circ f)(1)$
62. $(g \circ f)(-1)$
63. $(f \circ f)(3)$
64. $(g \circ g)(4)$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 6

65. Halina works in a department store. Three times per year she is allowed to combine her employee discount with special sale prices. Let x be the retail price of a blouse.
a. Halina's employee discount is 20%. Write a function $E(x)$ that represents the cost of the blouse after the discount.
b. Due to a manufacturer's incentive, the blouse is marked down 25%. Write a function $M(x)$ that represents the sale price.
c. The sales tax on clothing is 6%. Write a function $T(x)$ that describes the cost of a clothing item with sales tax included.
d. Halina found a blouse to which the discounts apply. Use the function composition $f=T \circ E \circ M$ to write the function $f(x)$ that represents the price Halina will pay for the blouse.
66. You invest p dollars in an account that earns a simple interest of 6%. The function that represents the account balance at the end of the year is $f(p)=1.06 p$.
a. Suppose that at the end of the year you deposit $\$ 500$ in the account. Write a new function $g(p)$ that shows the balance that will earn interest in the second year.
b. At the end of every year you add $\$ 500$ to the account. The interest rate remains 6%. Write a composition of functions f and g to find the account balance at the end of the third year, before adding the $\$ 500$. Find that balance for an initial investment of $\$ 1000$.

Lesson 6-7

For each function \boldsymbol{f}, find f^{-1} and the domain and range of \boldsymbol{f} and f^{-1}. Determine whether f^{-1} is a function.
67. $f(x)=6 x+1$
68. $f(x)=\sqrt{x+4}$
69. $f(x)=\sqrt{x-3}$
70. $f(x)=\sqrt{-5 x+2}$
71. $f(x)=3 x^{2}+1$
72. $f(x)=2-x^{2}$
\qquad
\qquad Date \qquad

Extra Practice (continued)

Chapter 6

73. You can use the function $f(x)=331.4+0.6 x$ to approximate the speed of sound in dry air, where x is the temperature in degrees Celsius.
a. Write an algebraic expression for the inverse function $f^{-1}(x)$.
b. Evaluate $f^{-1}(x)$ for $x 5350$. Round the result to the nearest whole number. Explain what your result represents.

Lesson 6-8

Graph each function.

74. $y=\sqrt{x}$
75. $y=\sqrt{x}-1$
76. $y=\sqrt{x}+3$
77. $y=\sqrt{x+3}$
78. $y=4 \sqrt{x}$
79. $y=\frac{3}{4} \sqrt{x}$
80. $y=2 \sqrt{x-5}+2$
81. $y=\sqrt[3]{x+1}$
82. $y=\sqrt[3]{x-2}-3$
