\qquad
\qquad Date \qquad

Extra Practice

Chapter 8

Lesson 8-1

Suppose that x and y vary inversely. Write a function that models each inverse variation, describe the graph of the function, and find \boldsymbol{y} when $\boldsymbol{x}=10$.

1. $x=3$ when $y=2$
2. $x=4$ when $y=-1$
3. $x=5$ when $y=8$
4. $x=-6$ when $y=-2$
5. $x=-8$ when $y=3$
6. $x=10$ when $y=15$
7. Sound intensity is inversely proportional to the square of the distance from the source-the farther from the source you are, the less intense the sound. Suppose the sound intensity is 30 watts per square meter $\left(\mathrm{W} / \mathrm{m}^{2}\right)$ at 8 meters. What is the sound intensity at 4 meters?
8. The maximum load a cylindrical column can support varies directly as the fourth power of the diameter and inversely as the square of the height. A column that is 2 ft in diameter and 10 ft high can support up to 6 tons. If a column is 1 ft in diameter and 12 ft high, what is the maximum load it can support?
9. The force required to keep a car from skidding in a turn varies jointly with the mass of the car m, the square of its speed v, and the curvature k of the turn. The curvature is the reciprocal of the radius of the turn, $k=\frac{1}{r}$. Suppose it takes 2800 lb of force to keep an 1800-lb car from skidding at $45 \mathrm{mi} / \mathrm{h}$ on a curve with radius 425 ft . What force is needed to keep the car
 from skidding at $50 \mathrm{mi} / \mathrm{h}$ on a curve with a radius of 440 ft ?

Lesson 8-2

Sketch the asymptotes and the graph of each function. Identify the domain and the range.
10. $y=\frac{8}{x}-1$
11. $y=\frac{1}{x-2}+1$
12. $y=\frac{2}{x+1}$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 8

Write an equation for the translation of $y=\frac{4}{x}$ that has the given asymptotes.
13. $x=0$ and $y=3$
14. $x=1$ and $y=-1$
15. $x=-2$ and $y=-4$
16. How do the graphs of $y=\frac{1}{x}$ and $y=\frac{-5}{x}$ compare?
17. The current I in amperes that exist in a circuit is inversely proportional to the resistance R in ohms of the circuit. For a circuit powered by a 9 -volt battery, $I=\frac{9}{R}$. Find the current in a circuit that has 0.125 ohms of resistance.

Lesson 8-3

Find points of discontinuity, the domain, and x - and y-intercepts of each rational function. Determine if the discontinuities are removable or non-removable.
18. $y=\frac{-3 x}{x-4}$
19. $y=\frac{3 x^{2}+2 x}{x}$
20. $y=\frac{x^{2}-16}{x^{2}+4}$
21. $y=\frac{(x+2)(x-1)}{(x+2)^{2}(x-1)}$
22. $y=\frac{4}{x-6}$
23. $y=\frac{9 x}{3 x^{3}-6 x}$
24. $y=\frac{x^{2}+7 x+12}{x+4}$
25. $y=\frac{x-7}{x-7}$
26. $y=\frac{x^{2}-3 x+2}{x-1}$

Sketch the graph of each rational equation.
27. $y=\frac{x+1}{x-2}$
28. $y=\frac{x-3}{(x+1)^{2}}$
29. $y=\frac{3 x}{2 x+1}$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 8

30. $y=\frac{x-4}{x^{2}}$
31. $y=\frac{2 x+1}{2 x-1}$
32. $y=\frac{x}{x+3}$
33. During a season of baseball, you score a hit 10 times during your first 40 at bats for a batting average of 25%, or 0.25 . How many more consecutive hits would you need to raise your batting average to 0.375 ?
34. In her first 16 basketball games, Kimberlyn made 65.8% of her free throws. In the next game, she made 7 of 9 free throws. Let x be the number of free throws Kimberlyn tried in the first 16 games. Write a rational function that represents the percent of free throws made after 17 games.
35. The monthly cost $C(p)$ of removing p percent of pollutants from waste byproduct in manufacturing can be modeled by the function $C(p)=\frac{1500 p}{100-p}$. A manufacturer decides to spend $\$ 28,500$ per month for removal of pollutants. What percent of the pollutant can the manufacturer expect to remove from the waste?

Lesson 8-4

Simplify. State any restrictions on the variables.
36. $\frac{5 x^{2} y}{10 x y^{4}}$
37. $\frac{4 d^{2}+8 d}{2 d}$
38. $\frac{x^{2}+9 x+18}{x+6}$
39. $\frac{x^{2}+3 x+2}{x-1} \cdot \frac{1-x}{x+2}$
40. $\frac{x^{2}-2 x-8}{x+3} \div \frac{x-4}{x+3}$
41. $\frac{2 x^{2}+5 x-3}{x^{2}-4 x} \cdot \frac{2 x^{3}-8 x^{2}}{x^{2}+6 x+9}$
42. $\frac{3 x+1}{x^{2}-6 x-6} \div \frac{6 x^{2}+11 x+3}{x^{2}+4 x+4}$
43. $\frac{3 x^{4}-x^{3}-2 x^{2}}{6 x^{2}-2 x-4}$

Lesson 8-5

Find the least common multiple of each pair of polynomials.
44. $2(4 x-1)$ and $4(x-1)$
45. $3(x+2)(x-3)$ and $5(x+2)(x+3)$
46. $2 x^{3} y(x-1)(x+4)$ and $x^{2}(x-2)$
47. $x^{2}+3 x-10$ and $x^{2}+7 x+10$
\qquad
\qquad
\qquad

Extra Practice (continued)

Chapter 8

Simplify each sum or difference. State any restrictions on the variables.

48. $\frac{6 x+1}{x+2}+\frac{2 x-5}{2 x+4}$
49. $\frac{8}{x^{2}-25}+\frac{9}{x-5}$
50. $\frac{x-3}{x^{2}+3 x}+\frac{7}{x+3}$
51. $\frac{3 x}{x^{2}+5 x+6}-\frac{2 x}{x^{2}+8 x+16}$
52. $\frac{2}{x^{2}-1}-3$
53. $\frac{2 x}{x-5}-\frac{x}{x+7}$
54. The total capacitance of two capacitors connected in series can be found using the equation $\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$ where the capacitance is measured in farads.
a. Solve the equation for C_{T}.
b. What is the total capacitance when a 2-farad capacitor and an 8-farad capacitor are put in series?

Lesson 8-6

Solve each equation. Check each solution.
55. $\frac{x}{4}=\frac{x+1}{3}$
56. $\frac{2}{x^{2}-1}=\frac{4}{x+1}$
57. $\frac{3 x}{5}+\frac{4}{x}=\frac{4 x+1}{5}$
58. $\frac{3 x}{x-2}=4+\frac{x}{5}$
59. $x+\frac{x}{4}-\frac{x}{5}=21$
60. $\frac{3}{x+4}+\frac{5}{4}=\frac{18}{x+4}$
61. Michael rows downstream on a river. He then returns to the starting point. Michael traveled a total distance of 16 mi in 6.25 h . Michael's average rowing speed in still water is $4 \mathrm{mi} / \mathrm{h}$. Assume the speed of the river current is constant. What is the speed of the river current?
62. It would take an apprentice house painter 1.5 h longer than his supervisor to paint an apartment. If they work together, they can complete the job in 4 h . About how long would it take the apprentice to complete the job working alone? Round your answer to the nearest tenth of an hour.
63. A master roofer can cover a garage in 1 h less than her new assistant. If they work together, they can complete the job in 7.75 h . How long would it take the assistant to complete the job working alone?

