Standard	Name of skill on Khan Academy	Link to skill	Description
A-APR.B. 2	Remainder theorem of polynomials	https://www.khanacademy.org/exercise/remainder-theorem-of-polynomials	Use the PRT (Polynomial Remainder Theorem) to determine the factors of polynomials and their remainders when divided by linear expressions.
A-APR.B. 3	Using zeros to graph polynomials	https://www.khanacademy.org/exercise/using-zeros-to-graph-polynomials	Select the graph that best suits a polynomial equation by considering the zeros of the polynomial.
A-REI.A. 2	Solving equations with one rational expression	https://www.khanacademy.org/exercise/linear equations_4	Solve equations that have one rational expression whose numerator and denominator are linear expressions.
A-REI.A. 2	Extraneous solutions to radical equations	https://www.khanacademy.org/exercise/extraneous-solutions-to-radicalequations	Practice some problems that involve thinking about the conditions for obtaining extraneous solutions while solving radical equations.
A-REI.A. 2	Solving rational equations 2	https://www.khanacademy.org/exercise/solving_rational equations_2	Solve equations that have one rational expression whose numerator and denominator are polynomial expressions.
A-REI.D. 11	Intersecting functions	https://www.khanacademy.org/exercise/intersecting-functions	Solve advanced and complicated equations using the power of graphs.
A-REI.D. 11	Systems of nonlinear equations	https://www.khanacademy.org/exercise/systems-of-nonlinear-equations	Practice the connection between the graphical representation of equations and their algebraic solutions.
A-SSE.A. 2	Factoring algebraic expressions using the distributive property	https://www.khanacademy.org/exercise/factoring_linear binomials	Factor expressions like $3 \mathrm{x}-9$ by applying the distributive property. (All expressions in this exercise are linear binomials.)
A-SSE.A. 2	Factoring quadratics with a leading coefficient of 1	https://www.khanacademy.org/exercise/factoring_polynomials 1	Use the "sum-product" form to factor quadratics of the form $\mathrm{x}^{\wedge} 2+\mathrm{bx}+\mathrm{c}$.
A-SSE.A. 2	Factoring quadrilaterals with a leading coefficient other than 1	https://www.khanacademy.org/exercise/factoring_polynomials by_groupin	Use the grouping method to factor quadratics of the form $\mathrm{ax}{ }^{\wedge} 2+\mathrm{bx}+\mathrm{c}$.
A-SSE.A. 2	Factoring quadratics 2	https://www.khanacademy.org/exercise/factoring_polynomials 2	Factor polynomials that can be factored as the product of a monomial and a quadratic expression, then further factor the quadratic expression.
A-SSE.A. 2	Factoring difference of squares 1	https://www.khanacademy.org/exercise/factoring difference of squares 1	Factor quadratic expressions into the special products of the general forms $(x+a)^{\wedge} 2$, $(x-a)^{\wedge} 2$, and $(x+a)(x-a)$.
A-SSE.A. 2	Nested fractions	https://www.khanacademy.org/exercise/nested-fractions	Simplify rational expressions that contain rational expressions within their numerators or denominators.
A-SSE.A. 2	Factoring difference of squares 2	https://www.khanacademy.org/exercise/factoring_difference of squares 2	Factor quadratic expressions of the general difference of squares form: $(a x)^{\wedge} 2-b \wedge 2$. The factored expressions have the general form $(a x+b)(a x-b)$.
A-SSE.A. 2	Factoring quadratics with two variables	https://www.khanacademy.org/exercise/factoring_polynomials with two -	Factor "advanced" polynomials (i.e. polynomials of various degrees and or with two variables) using quadratic factorization methods.
A-SSE.A. 2	Factoring difference of squares 3	https://www.khanacademy.org/exercise/factoring_difference of squares 3	Factor "advanced" polynomials (i.e. polynomials of various degrees and or with twe variables) using special product factorization methods.
A-SSE.B. 3	Key features of quadratic functions	https://www.khanacademy.org/exercise/rewriting-expressions-to-revealinformation	Find the y-intercept, the zeroes ("roots"), and the vertex of the graphs of quadratic functions. Functions are given in standard, vertex, and factored form.
A-SSE.B. 3	Rewriting and interpreting exponential functions	https://www.khanacademy.org/exercise/rewriting-and-interpreting-exponential-functions	Given a modeling function, find the time interval over which the modeled quantity changes by a given factor.
A-SSE.B. 3	Solving quadratics by factoring	https://www.khanacademy.org/exercise/solving_quadratics by factoring	Solve quadratic equations of the form $\mathrm{x}^{\wedge} 2+\mathrm{bx}+\mathrm{c}=0$ that can be rewritten according to their linear factors.
A-SSE.B. 3	Solving quadratics by completing the square 2	https://www.khanacademy.org/exercise/completing_the square_2	Solve quadratic equations of the form $\mathrm{ax}{ }^{\wedge} 2+\mathrm{bx}+\mathrm{c}$ by completing the square.
A-SSE.B. 3	Solving quadratics by factoring 2	https://www.khanacademy.org/exercise/solving_quadratics by factoring_2	Solve quadratic equations of the form $\mathrm{ax}^{\wedge} 2+\mathrm{bx}+\mathrm{c}=0$ that can be rewritten according to their linear factors
A-SSE.B. 3	Finding and interpreting key features of quadratics	https://www.khanacademy.org/exercise/key-features-quadratics	Answer questions about real world situation, given the quadratic functions that model them.
A-SSE.B. 3	Equivalent forms of exponential expressions	https://www.khanacademy.org/exercise/equivalent-forms-of-expressions-with-variable-exponents	Determine whether pairs of exponential expressions are equivalent.
A-SSE.B. 3	Solving quadratics by completing the square 1	https://www.khanacademy.org/exercise/completing the square_1	Solve quadratic equations of the form $\mathrm{x}^{\wedge} 2+\mathrm{bx}+\mathrm{c}$ by completing the square.
A-SSE.B.3a	Key features of quadratic functions	https://www.khanacademy.org/exercise/rewriting-expressions-to-revealinformation	Find the y-intercept, the zeroes ("roots"), and the vertex of the graphs of quadratic functions. Functions are given in standard, vertex, and factored form.
A-SSE.B.3b	Completing the square in quadratic expressions	https://www.khanacademy.org/exercise/completing the square in quadrati	Practice "completing the square" with quadratic expressions.
A-SSE.B.3c	Rewriting and interpreting exponential functions	https://www.khanacademy.org/exercise/rewriting-and-interpreting-exponential-functions	Given a modeling function, find the time interval over which the modeled quantity changes by a given factor.
A-SSE.B.3c	Equivalent forms of exponential expressions	https://www.khanacademy.org/exercise/equivalent-forms-of-expressions-with-variable-exponents	Determine whether pairs of exponential expressions are equivalent.
A-SSE.B. 4	Finite geometric series word problems	https://www.khanacademy.org/exercise/geometric-series	Understanding and solving problems with the formula for a finite geometric series
A-SSE.B. 4	Calculating finite geometric series	https://www.khanacademy.org/exercise/geometric-series--1	Evaluate finite geometric series given in sigma notation, recursively, or explicitly.
F-BF.A. 1	Modeling with sequences	https://www.khanacademy.org/exercise/recursive explicit	Given a verbal description of a real-world relationship, determine the sequence that models that relationship.
F-BF.A. 1	Modeling with composite functions	https://www.khanacademy.org/exercise/modeling-with-composite-functions	Practice composing two given basic modeling functions in order to model a more complex situation.
F-BF.A.1a	Modeling with sequences	https://www.khanacademy.org/exercise/recursive explicit	Given a verbal description of a real-world relationship, determine the sequence that models that relationship.
F-BF.A.1c	Modeling with composite functions	https://www.khanacademy.org/exercise/modeling-with-composite-functions	Practice composing two given basic modeling functions in order to model a more complex situation.
F-IF.B. 4	Interpreting features of functions	https://www.khanacademy.org/exercise/interpret-features-func-2	Match features of graphs of modeling functions to their real-world meaning.
F-IF.B. 4	Interpret the end behavior of algebraic	https://www.khanacademy.org/exercise/recog-features-func-2	Given the graph that models a real world context, answer a question about the

	models		context that concerns the end behavior of the graph.
F-IF.B. 4	Positive and negative intervals	https://www.khanacademy.org/exercise/positive and negative parts of fur	Highlight intervals on the domain of a function where it's entirely positive or entirely negative.
F-IF.B. 6	Average rate of change	https://www.khanacademy.org/exercise/avg-rate-of-change	Find the average rate of change of a function over a given interval.
N-RN.A. 2	Multi-step simplification of rational exponent expressions	https://www.khanacademy.org/exercise/manipulating-fractional-exponents	Evaluate numerical expressions and simplify variable expressions with mixed exponential and radical terms, by using the properties of exponents.
N-RN.A. 2	Add, subtract, multiply, and divide numerical radical terms	https://www.khanacademy.org/exercise/multiplying_radicals	Practice simplifying radical expressions with two terms.
N-RN.A. 2	Simplify numerical radical expressions with multiple terms	https://www.khanacademy.org/exercise/adding_and subtracting_radicals	Practice simplifying expressions with multiple radical terms combined by addition, subtraction, multiplication, and/or division.
N-RN.A. 2	Single-step simplifcation of rational exponent expressions	https://www.khanacademy.org/exercise/exponents 4	Evaluate numerical exponential expressions and simplify variable exponential expressions by using the properties of exponents.
N-RN.A. 2	Rational exponents and radicals	https://www.khanacademy.org/exercise/exponents 3	Evaluate numerical expressions with rational exponents, and convert between equivalent forms of exponential and radical expressions.
S-IC.B. 3	Types of statistical studies	https://www.khanacademy.org/exercise/types-of-statistical-studies	
S-IC.B. 4	Skills for this standard are coming soon	N/A	
S-IC.B. 6	Types of statistical studies	https://www.khanacademy.org/exercise/types-of-statistical-studies	

