\qquad
\qquad
\qquad

7-6 $\frac{\text { Standardized Test Prep }}{\text { Natural Logarithms }}$

Multiple Choice

For Exercises 1-4, choose the correct letter. Do not use a calculator.

1. What is $3 \ln 5-\ln 2$ written as a single natural logarithm?
(A) $\ln 7.5$
(B) $\ln 27$
(C) $\ln \left(\frac{5}{2}\right)^{3}$
(D) $\ln 62.5$
2. What is the solution of $e^{x+1}=13$?
(F) $x=\ln 13+1$
(G) $x=\ln 13-1$
(H) $x=\ln 13$
(I) $x=\ln 12$
3. What is the solution of $\ln (x-2)^{2}=6$?
(A) $2+e^{3}$
(B) $2-e^{3}$
(C) $2 \pm e^{3}$
(D) $2 \pm e^{6}$
4. What is the solution of $e^{\frac{x}{2}+1}+3=8$?
(F) $x=2 \ln 5-1$
(G) $x=2 \ln 5-2$
(H) $x=2 \ln 4$
(I) $x=\frac{1}{2}(\ln 5-1)$

Short Response

5. The maximum velocity v of a rocket is $v=-0.0098 t+c \ln R$. The rocket fires for t seconds and the velocity of the exhaust is $c \mathrm{~km} / \mathrm{s}$. The ratio of the mass of the rocket filled with fuel to the mass of the rocket without fuel is R. A spacecraft can attain a stable orbit 300 km above Earth if it reaches a velocity of $7.7 \mathrm{~km} / \mathrm{s}$.
a. What is the velocity of a spacecraft whose booster rocket has a mass ratio of 16 , an exhaust velocity of $3.2 \mathrm{~km} / \mathrm{s}$, and a firing time of 40 s ?
b. Can this rocket attain a stable orbit 300 km above Earth? Explain in words or show work for how you determined your answer.
