\qquad
\qquad Date \qquad

Extra Practice

Chapter 12

Lesson 12-1

Find each sum or difference.

1. $\left[\begin{array}{cc}-8 & 3 \\ 19 & -45\end{array}\right]+\left[\begin{array}{cc}12 & 64 \\ -7 & 63\end{array}\right]$
2. $\left[\begin{array}{ll}3.6 & -9.8 \\ 4.0 & -1.7\end{array}\right]-\left[\begin{array}{cc}0.8 & 3.4 \\ -6.1 & 7.9\end{array}\right]$
3. $\left[\begin{array}{ccc}4 & 6 & -3 \\ 8 & -9 & -1\end{array}\right]+\left[\begin{array}{ccc}10 & 7 & -3 \\ -9 & 2 & 7\end{array}\right]$
4. $\left[\begin{array}{cc}-308 & 651 \\ 912 & -347\end{array}\right]+\left[\begin{array}{cc}105 & 318 \\ -762 & -438\end{array}\right]$
5. $\left[\begin{array}{cc}7 & -3 \\ 5 & 2\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
6. $\left[\begin{array}{cc}-2 & 9 \\ 0 & -4\end{array}\right]+\left[\begin{array}{cc}2 & -9 \\ 0 & 4\end{array}\right]$

Solve each matrix equation.
7. $\left[\begin{array}{cc}25 & -60 \\ 42 & 91\end{array}\right]+X=\left[\begin{array}{cc}-37 & 61 \\ 85 & 37\end{array}\right]$
8. $\left[\begin{array}{lll}-8 & 3 & 1 \\ -9 & 6 & 7\end{array}\right]-X=\left[\begin{array}{lll}5 & 8 & 3 \\ 4 & 2 & 6\end{array}\right]$
9. $X+\left[\begin{array}{ccc}6 & 2 & 9 \\ 1 & 5 & 10\end{array}\right]=\left[\begin{array}{ccc}11 & -5 & 16 \\ 3 & 6 & 8\end{array}\right]$
10. $X-\left[\begin{array}{cc}2.3 & 6.5 \\ 9.4 & -8.2\end{array}\right]=\left[\begin{array}{cc}-4.7 & 3.6 \\ 9.4 & -5.8\end{array}\right]$

Lesson 12-2

Solve each matrix equation. Check your answers.
11. $2\left[\begin{array}{ll}2 & -7 \\ 8 & -4\end{array}\right]+4 X=\left[\begin{array}{ll}0 & -6 \\ 4 & -8\end{array}\right]$
12. $0.5 X+\left[\begin{array}{cc}-5 & 3 \\ 0 & -2\end{array}\right]=\left[\begin{array}{cc}-3 & 3.5 \\ -1 & -0.5\end{array}\right]$
\qquad Class \qquad Date \qquad

Extra Practice (continued)

Chapter 12

For exercises 13-24, use matrices A, B, C, and D shown below. Perform the indicated operations if they are defined. If an operation is not defined, label it undefined.
$A=\left[\begin{array}{cc}8 & 1 \\ -2 & 5\end{array}\right]$
$B=\left[\begin{array}{ccc}-3 & 1 & 0 \\ -2 & -1 & 5\end{array}\right]$
$C=\left[\begin{array}{ll}9 & 4 \\ 5 & 1 \\ 2 & 0\end{array}\right]$
$D=\left[\begin{array}{ccc}1 & 7 & 3 \\ 8 & 10 & -2\end{array}\right]$
13. $A B$
14. $B D$
15. $2 A$
16. $C D$
17. $D A$
18. $-3 B$
19. $0.2 A$
20. $B A$
21. $5 C$
22. $C B$
23. $\frac{1}{2} D$
24. $B C$
25. A frozen yogurt supplier uses two machines to make chocolate and vanilla frozen yogurt. Both machines can be used in the morning and afternoon. Matrix A show the maximum hourly output of each machine. Matrix B shows how long the machines are used for production of each flavor.

Matrix $A:$ Output (gal/h) Matrix $B: \quad$ Time (h)

Chocolate Vanilla	
A.M. P.M.	
Machine 1	
Machine 2	

7 \& 8\end{array}\right] \quad\) Chocolate $\left.\begin{array}{cc}2 & 3 \\
1 & 2\end{array}\right]$
a. Compute the product $A B$ of these matrices.
b. Describe what this product represents

Lesson 12-3

Determine whether the matrices are multiplicative inverses.
26. $\left[\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ 1 & \frac{4}{3}\end{array}\right],\left[\begin{array}{cc}-6 & 3 \\ \frac{9}{2} & -\frac{4}{3}\end{array}\right]$
27. $\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right],\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{4} \\ 1 & \frac{1}{2}\end{array}\right]$
\qquad
\qquad Date \qquad

Extra Practice (continued)

Chapter 12

Evaluate the determinant of each matrix.
28. $\left[\begin{array}{cc}2 & 4 \\ 2 & -3\end{array}\right]$
29. $\left[\begin{array}{cc}5 & -2 \\ -1 & 3\end{array}\right]$
30. $\left[\begin{array}{cc}-2 & -7 \\ 0 & 4\end{array}\right]$
31. $\left[\begin{array}{cc}-2 & 3 \\ 9 & -1\end{array}\right]$
32. $\left[\begin{array}{cc}-2 & 6 \\ 3 & 3\end{array}\right]$
33. $\left[\begin{array}{cc}0.5 & -3 \\ -1.5 & 4\end{array}\right]$
34. $\left[\begin{array}{ccc}4 & -1 & 5 \\ 2 & 0 & -1 \\ -3 & 2 & 1\end{array}\right]$
35. $\left[\begin{array}{ccc}0 & -2 & 7 \\ 1 & -1 & 0 \\ 3 & 8 & -1\end{array}\right]$
36. $\left[\begin{array}{ccc}1 & 2.5 & -7 \\ 3 & -1 & 0.5 \\ 5.5 & -2 & 0\end{array}\right]$

Determine whether each matrix has an inverse. If an inverse matrix exists, find it.
37. $\left[\begin{array}{cc}3 & 1 \\ -6 & -2\end{array}\right]$
38. $\left[\begin{array}{cc}2 & -1 \\ 4 & 2\end{array}\right]$
39. $\left[\begin{array}{ll}6 & 9 \\ 2 & 3\end{array}\right]$
40. What is the area of the triangle with vertices $(3,4),(5,-2)$, and $(-1,8)$?

Lesson 12-4

Solve each matrix equation. If an equation cannot be solved, explain why.
41. $\left[\begin{array}{cc}2 & 1 \\ -1 & 7\end{array}\right] X=\left[\begin{array}{cc}8 & 1 \\ -12 & 41\end{array}\right]$
42. $\left[\begin{array}{cc}-1 & 0 \\ 6 & 3\end{array}\right] X=\left[\begin{array}{l}-9 \\ -3\end{array}\right]$
43. $\left[\begin{array}{cc}-3 & 5 \\ 1 & 8\end{array}\right] X=\left[\begin{array}{c}29 \\ 58\end{array}\right]$

Solve each system of equations using a matrix equation. Check your answers.
44. $\left\{\begin{array}{l}x-y=3 \\ x+y=5\end{array}\right.$
45. $\left\{\begin{array}{l}x-2 y=7 \\ x+3 y=12\end{array}\right.$
46. $\left\{\begin{array}{l}2 x+5 y=10 \\ x+y=2\end{array}\right.$
47. County economists calculated that, in an average year, 9% of employed people lose their jobs and 86% of the unemployed find new jobs. The remaining people remain employed or unemployed, depending on their previous status. On January 1, the county has an unemployment rate of 7%. Calculate the expected unemployment rate for the next two years to the nearest tenth of a percent.
48. Leona's Diner offers 8-piece, 12-piece, and 16piece family chicken meals. The table at the right lists the costs of three different orders. What is the price of each kind of meal?

8-piece meals	12-piece meals	16-piece meals	Total Cost
2	3	1	$\$ 96$
4	5	0	$\$ 133$
2	4	2	$\$ 134$

49. At a diner, two hot dogs and one hamburger cost
$\$ 10$, while three hot dogs and two hamburgers cost $\$ 17.25$.
Write and solve a matrix equation to find the cost of a hot dog and the cost of a hamburger.
\qquad Class \qquad Date \qquad
Extra Practice (continued)

Chapter 12

Lesson 12-5

Use $\triangle A B C$ with coordinates $A(1,5), B(2,-1)$, and $C(4,3)$. Write the coordinates of each image in matrix form.
50. a dilation 5 times the size
51. a translation 3 units left and 1 unit up
52. a translation 2 units right and 7 units down
53. a dilation one third the size
54. The matrix $\left[\begin{array}{rr}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$ represents a 30° counterclockwise rotation. The
preimage is $\triangle A B C$ with the vertices $A(1,1), B(1,2)$, and $C(5,4)$. Write a matrix for the vertices of the image.

Lesson 12-6

Transform each vector as described. Write the resulting vector in component form.
55. $\langle 7,-2\rangle$; rotate 90°
56. $\langle 4,3\rangle$; rotate 180°
57. $\langle-2,-5\rangle$; rotate 270°
58. $\langle 1,-6\rangle$; reflect across y-axis

Let $\mathbf{q}=\langle 1,3\rangle, \mathbf{r}=\langle 4,-3\rangle$, and $\mathbf{s}=\langle-9,4\rangle$. Find the component forms of the following vectors.
59. q + s
60. r-s
61. $-3 \mathbf{q}$

Determine whether the vectors in each pair are normal.
62. $\mathbf{a}=\langle-9,3\rangle, \mathbf{b}=\langle 2,6\rangle$
63. $\mathbf{c}=\langle-4,3\rangle, \mathbf{d}=\langle 6,-8\rangle$
64. $\left[\begin{array}{c}12 \\ 4\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 6\end{array}\right]$
65. $\left[\begin{array}{c}7 \\ 14\end{array}\right]$ and $\left[\begin{array}{c}-14 \\ -7\end{array}\right]$
66. A boat travels east at a speed of $25 \mathrm{mi} / \mathrm{h}$. Suppose the boat encounters a current moving south at $2 \mathrm{mi} / \mathrm{h}$. What is the resultant speed of the boat?

