Extra Practice

Chapter 7

Lesson 7-1

Graph each equation.

1.
$$y = 3^x$$
 2. $y = 2(4)^x$ **3.** $y = 2^{-x}$

4.
$$y = \left(\frac{1}{4}\right)^x$$
 5. $y = -0.1^x$ **6.** $y = -\left(\frac{1}{2}\right)^x$

Without graphing, determine whether each equation represents exponential growth or exponential decay. Then find the y-intercept.

- **7.** $y = 10^x$ **8.** $y = 327(0.05)^x$ **9.** $y = 1.023(0.98)^x$ **10.** $y = 0.5(1.67)^x$ **11.** $y = 1.14^{x}$ **12.** $y = 8(1.3)^x$
- **13.** $y = 2\left(\frac{9}{10}\right)^x$ **14.** $y = 4.1(0.72)^x$ **15.** $y = 9.2(2.3)^x$
- 16. Mr. Andersen put \$1000 into an account that earns 4.5% annual interest. The interest is compounded annually and there are no withdrawals. How much money will be in the account at the end of 30 years?
- 17. A manufacturer bought a new rolling press for \$48,000. It has depreciated in value at an annual rate of 15%. What is its value 5 years after purchase? Round to the nearest hundred dollars.

Extra Practice (continued)

Chapter 7

Lesson 7-2

Graph each function as a transformation of its parent function.

18.
$$y = 3^{x} - 1$$
 19. $y = \frac{1}{2} (4)^{x} - 3$ **20.** $y = -(2)^{x-2} + 2$

- 21. You place \$900 in an investment account that earns 6% interest compounded continuously. Find the balance after 5 years.
- **22.** Bram invested \$10,000 in an account that earns simple 5% interest annually.
 - a. How much interest does the account earn in the first 10 years? Round to the nearest dollar.
 - **b.** How much more would the account earn in interest in the first 10 years if the interest compounded continuously? Round to the nearest dollar.
- Radium-226 has a half-life of 1660 years. How many years does it take a 23. radium sample to decay to 55% of the original amount? Round your answer to the nearest year.
- The population of Blinsk was 26,150 in 2000. In 2005, the population was 24. 28,700. Find the growth function P(x) that models the population.

Lesson 7-3

Write each equation in logarithmic form.

25. $100 = 10^2$	26. $9^3 = 729$	27. $64 = 4^3$
28. $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$	29. $49^{\frac{1}{2}} = 7$	30. $\left(\frac{1}{3}\right)^{-3} = 27$
31. $625^{\frac{1}{4}} = 5$	32. $2^{-5} = \frac{1}{32}$	33. 6 ² = 36
Evaluate each logarithm.		
34. log 1000	35. log ₄ 256	36. log ₂₇ 9
37. $\log_{\frac{1}{3}} 256$	38. log ₁₂₅ 625	39. $\log_8 \frac{1}{32}$

Prentice Hall Algebra 2 • Extra Practice Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Class

Date

Extra Practice (continued)

Chapter 7

Graph each logarithmic function.

40. $y = 2 \log x$

41. $y = \log_8 x$

42. $y = \log_4 (x + 1)$

43. You can use the equation $N = k \log A$ to estimate the number of species N that live in a region of area A. The parameter k is determined by the conditions in the region. In a rain forest, 2700 species live in 500 km². How many species would remain if half of the forest area were destroyed by logging and farming?

Lesson 7-4

Write each expression as a single logarithm.

44. log 8 + log 3	45. $4(\log_2 x + \log_2 3)$
46. $3 \log x + 4 \log x$	47. $\log 4 + \log 2 - \log 5$
Expand each logarithm.	

- **48.** $\log_b 2x^2y^3$ **49.** $\log_b 3m^3p^2$ **50.** $\log_b (4mn)^5$
- **51.** $\log_b \frac{x^2}{2y}$ **52.** $\log_b \frac{(xy)^4}{2}$ **53.** $\log_b \sqrt[5]{x^3}$
- **54.** Use the properties of logarithms to evaluate $\log_8 6 \log_8 15 + \log_8 20$.
- **55.** The work done in joules (J) by a gas expanding from volume V_1 to volume V_2 is modeled by the equation $W = nRT \ln V_2 - nRT \ln V_1$, where *n* is the quantity of gas in moles (mol), T is the temperature in kelvin (K), and $R = 8.314 \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}.$
 - **a.** Write the equation in terms of the ratio of the two volumes.
 - **b.** Find the work done by 1 mol of gas at 300 K as it doubles its volume.

Class

Date

Extra Practice (continued)

Chapter 7

Lessons 7-5 and 7-6

Solve each equation.		
56. $\sqrt[3]{y^2} = 4$	57. $2 - 4^x = -62$	58. $\log x + \log 2 = 5$
59. $\log_3(x+1) = 4$	60. $e^x = 5$	61. $e^{\frac{x}{4}} = 5$
62. $\ln x - \ln 4 = 7$	63. $\log 4x = -1$	64. $\log 4 - \log x = -2$
65. $\ln 2 + \ln x = 4$	66. $4 + 5^x = 29$	67. $e^{3x} = 20$

Simplify each expression.

68. 5 ln 1	69. $\ln e^2$	70.	$\frac{1}{\ln e^{20}}$
$71. \ \frac{\ln e}{3\ln e^3}$	72. 2 ln <i>e</i> ⁻⁵	73.	$\frac{3\ln e^4}{2\ln e^6}$

74. What are the domain and range of the graph of $y = \ln x$?

- **75.** The function $T(t) = T_r + (T_i T_r)e^{kt}$ models Newton's Law of Cooling. It allows you to predict the temperature T(t) of an object t minutes after it is placed in a constant-temperature cooling environment, such as a refrigerator. T_i is the initial temperature of the object, and T_r is the temperature inside the refrigerator. The number k is a constant for the particular object in question.
 - a. A canned fruit drink takes 5 minutes to cool from 75°F to 68°F after it is placed in a refrigerator that keeps a constant temperature of 38°F. Find the value of the constant k for the fruit drink. Round to the nearest thousandth.
 - **b.** What will be the temperature of the fruit drink after it has been in the refrigerator for 30 minutes?
 - c. How long will the fruit drink have to stay in the refrigerator to have a temperature of 40°F?
 - d. Will the fruit drink ever have a temperature of exactly 38°F? Explain.
- 76. The adult population of a city is 1,150,000. A consultant to a law firm uses the function $P(t) = 1,150,000(1 - e^{-0.03t})$ to estimate the number of people P(t)who have heard about a major crime t days after the crime was first reported. About how many days does it take for 60% of the population to have been exposed to news of the crime?